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KERNEL RIDGE REGRESSION15

Kernel Ridge Regression[1, 2] (KRR) is a machine16

learning method for regression. We introduce the17

method for abstract training points (xi, yi), i.e. fea-18

tures x1, . . . xM ∈ Rd and associated labels Y =19

(y1, . . . , yM )
T ∈ RM and describe the actual models used20

in the main text afterwards. We want to model a func-21

tion f : Rd → R that maps from features to labels. This22

model should not be ‘learned by heart’ but perform well23

on unseen data (i.e. generalize). We first restrict the set24

of possible functions to the reproducing kernel Hilbert25

space (RKHS) H on the space of discretized densities26

that is induced by the Gaussian kernel function27

k(x, x′) = exp

(
−||x− x

′||2

2σ2

)
. (1)

The restriction is very mild and rather technical; more28

interesting is the choice of the kernel function which29

determines the scalar product (and thus the norm) of30

the RKHS. Leaving rigor aside, the Gaussian kernel in-31

duces an RKHS norm ||f ||H that is smaller for simpler,32

smoother functions and higher for more complicated, os-33

cillating functions. We minimize the empirical risk func-34

tional35

C(f) =

M∑
i=1

|yi − f(xi)|2 + λ‖f‖2H (2)

that defines a trade-off between error on the training36

points and smoothness of the function controlled by the37

hyper-parameter λ.38

The representer theorem[3] allows us to assume that39

the solution to Eq. 2 is given by a linear combination of40

kernel functions f =
∑M
i=1 αik(xi, ·). It now suffices to41

solve42

C(α) =

M∑
i=1

|yi − f(xi)|2 + λ‖f‖2H (3)

=

M∑
i=1

|yi − f(xi)|2 + λαᵀKα, (4)

where Kij = k(xi, xj) is the kernel matrix. The solution43

is given by44

α = (K− λI)−1Y. (5)

Note that all model parameters and hyper-parameters45

are estimated on the training set; the hyper-parameter46

choice makes use of standard cross-validation procedures47

(see Hansen et al. [4]). Once the model is fixed after48

training, it is applied unchanged out-of-sample.49

We use this method for various maps:50

Non-interacting kinetic energy functional (TML
s [n], 1-51

D). The training points are given by pairs of densities52

and associated kinetic energies. We discretize the densi-53

ties and use them in vectorial form, i.e. n ∈ RG. Thus,54

the functional L2 → R is modeled as a function RG → R55

ML-OF map (1-D). The training points are given by56

pairs of discretized 1-D box potentials and associated to-57

tal energies.58

ML-KS map (3-D). The training points are given by59

pairs of discretized Gaussians potentials (as described in60

the main text) and total energies.61

Total energy functional (EML[n], 3-D). The training62

points are given by pairs of densities in basis function63

representation (see below) and associated total energies.64

Just as for TML
s , this functional is modeled as a function.65

ML HOHENBERG-KOHN MAP66

The basis representation for the densities is given by67
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n(x) =

L∑
l=1

u(l)φl(x), (6)

where φl are the L basis functions. We introduce some68

notation and continue to write the density in grid rep-69

resentation as n, and its basis coefficients as u. We can70

then write the HK map model as71

nML[v](x) =

L∑
l=1

u(l)[v]φl(x), (7)

where the L basis function coefficients are regular KRR72

models,73

u(l)[v] =
M∑
i=1

β
(l)
i k(v, vi), (8)

of external potentials v with a Gaussian kernel function.74

The contribution of the error to the cost function can be75

formulated as76

e(β) =

M∑
i=1

‖ni − nML[vi]‖2L2
(9)

=

M∑
i=1

∥∥∥∥∥∥ni −
L∑
l=1

M∑
j=1

β
(l)
j k(vi, vj)φl

∥∥∥∥∥∥
L2

, (10)

with the L2 norm. We write this cost function in terms77

of basis function coefficients. This can be viewed as pro-78

jecting the inside of the norm on each basis function.79

Assuming orthogonality of the basis functions yields80

e(β) =

M∑
i=1

L∑
l=1

∣∣∣∣∣∣u(l)i −
M∑
j=1

β
(l)
j k(vi, vj)

∣∣∣∣∣∣
2

. (11)

where u
(l)
i = 〈ni, φl〉 is the l-th basis function coefficient81

of the i-th training density, as defined in Eq. 6 if orthog-82

onality is satisfied. After reordering the sums over i and83

l, we view each l independently and solve analogously to84

regular KRR85

β(l) =
(
Kσ(l) + λ(l)I

)−1
u(l), l = 1, . . . , L (12)

where, for each basis function l, λ(l) is a regularization86

parameter, Kσ(l) is a Gaussian kernel with kernel width87

σ(l). The λ(l) and σ(l) can be chosen individually for88

each basis function via independent cross-validation (see89

[4, 5]).90

BASIS FUNCTIONS91

Fourier basis. We define the basis as92

φl(x) =

{
cos {2πx(l − 1)/2} , l odd

sin {2πxl/2} , l even
l = 1, . . . , L.

(13)

We transform the density efficiently via the discrete93

Fourier transform94

u
(l)
i =

G∑
m=1

ni(xm)φl(xm). (14)

The back-projection is written as95

nML[v](x) =

L∑
l=1

u(l)[v]φl(x). (15)

KPCA basis. We define the basis as:96

φKPCA
l =

M∑
j=1

p
(l)
j Φ(nj). (16)

The parameters p
(l)
j are found by eigen-decomposition of97

the Kernel matrix. The KCPA basis coefficients are given98

by99

u
(l)
i = 〈Φ(ni), φ

KPCA
l 〉 =

M∑
j=1

p
(l)
j k(nj , ni) (17)

with kernel map Φ. The back-projection for KPCA is100

not trivial but several solutions exist. We follow Bakir101

et al. [6] and learn the back-projection map.102

GRADIENT DESCENT ISSUES103

There are two ways to remedy problems of the gradi-104

ent descent procedure: First, the gradient descent step105

can be “de-noised” by projecting the gradient onto the106

data manifold and thus removing the noisy directions.107

Secondly, the directions outside of the data manifold can108

be removed in a preprocessing step to get rid of the influ-109

ence of the noisy directions on the gradient completely.110

Both methods yield similar results.111

Several approaches exist for describing and projecting112

onto the data manifold. Common to each approach is113

the idea to find principle components and to project on114
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Figure 1. The extent of the H2O dataset. The figure shows
the atom coordinates in angstrom. Blue are atoms from 15
training points, red from 50 test points.
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those in which direction the densities have largest vari-115

ance. Best results are reported [7] by using Kernel Prin-116

ciple Component Analysis[8] (KPCA), a non-linear gen-117

eralization of PCA.118

There are three issues with the assumed gradient-based119

approaches: First, the correct choice of the number of120

(K)PCA components K has to be made. It is generally121

possible to view it as a hyper-parameter and find the op-122

timal K via cross-validation. However, we can not choose123

fractional Ks. One K might be not enough and K + 1124

too much information. Second, the data points only lie125

in a bounded region of a manifold that can be described126

via PCA components. It is still possible for the gradi-127

ent descent to walk outside this bounded region toward128

a point where the model has no information and thus the129

gradients become inaccurate. A (K)PCA method that130

only accesses the scalar products between points in the131

data set can not solve this[9]. Third, it might not be132

possible to find a suitable pre-image for a ground-state133

density given by (K)PCA coefficients[10].134

MOLECULAR DATASETS135

The extent of the dataset for H2O is visualized in Fig. 1.136

In this case, conformers were generated from random dis-137

placements from the optimized geometry.138139

For benzene and ethane, conformers were generated140

from isothermal molecular dynamics (MD) trajectories.141

The range of atomic positions from combined 1 ns 300 K142

and 350 K trajectories is shown in Fig. 2 for benzene143

and Fig. 3 for ethane after snapshots are aligned to a144

reference molecule. For malonaldehyde, the classical MD145

trajectories include 0.5 ns for each tautomer at each tem-146

perature. Resulting conformers that are used to create147

the K-means sampled training set are shown in Fig. 4.148

The test set is taken from an ab initio MD trajectory at149

300 K.150

Figure 2. The extent of the benzene conformers generated by
MD (red points). K-means sampling is used to select 2,000
representative points. Test points from an independent tra-
jectory are in blue and are offset for clarity.

Figure 3. The extent of the ethane conformers generated by
MD (red points). K-means sampling is used to select 2,000
representative points. Test points from an independent tra-
jectory are in blue.

DFT CONVERGENCE151

For our 3-D DFT calculations in Quantum152

Espresso[11], we center a water molecule in a cubic153

cell and converge three variables: the kinetic energy154
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Figure 4. The extent of the malonaldehyde conformers gener-
ated by MD (red points). K-means sampling is used to select
2,000 representative points. Test points from an independent
ab initio MD trajectory are in blue and are offset for clarity.

cutoff for wavefunctions ecutwfc in steps of 10 Ry, the155

kinetic energy cutoff for charge density and potential156

ecutrho in steps of 40 Ry, and the cell dimension157

celldm in steps of 1 bohr. We increase parameters158

until increasing any parameter does not change the159

equilibrium position total energy by more than 0.01160

kcal/mol for H2O. We end up with ecutwfc of 90 Ry,161

ecutrho of 360 Ry, and celldm of 20 bohr, which are162

used for all other molecules in this work.163

SAMPLING164

For H2, since there is only one atomic distance to ad-165

just, we take the M equi-distant points in the parameter166

range and for each of these points select the training point167

that is closest.168

For larger molecules with more parameters (H2O, Ben-169

zene, Ethane, Malonaldehyde) we also want to cover the170

conformer space in a way that all conformers are rela-171

tively close to at least one training point.172

Assuming pi are the parameters of conformer i and
i ∈ P̃j if and only if p̃j is closest to pi, we want to find
p̃j , j = 1 . . .M that minimize

M∑
j=1

∑
i∈P̃j

||p̃j − pi||2. (18)

K-means[12] solves this problem for continuous p̃j . How-173

ever, since K-means returns only locally optimal solu-174

tions, we rerun the algorithm 50 times and select the175

solution which minimizes Eq. 18. We choose the points176

pi closest to each p̃j as training points.177

LOGIC OF DENSITY FUNCTIONAL THEORY178

(DFT)179

Within the Born-Oppenheimer approximation in non-180

relativistic quantum mechanics, and using atomic units,181

the Hohenberg-Kohn paper[13] laid the theoretical frame-182

work of all modern DFT. The first statement is that the183

mapping184

v(r)←→ n(r) (19)

is one-to-one, i.e., at most one potential can give rise to185

a given ground-state density, even in a quantum many-186

body problem, for given interaction among particles and187

statistics (i.e., fermions or bosons). A follow-up claim is188

that the ground-state energy of an electronic system can189

be found from190

E[v] = min
n

{
F [n] +

∫
d3r n(r)v(r)

}
(20)

where F [n] is a density functional containing all many-191

body effects. The minimizing density is the solution to192

the Euler equation:193

δF

δn(r)
+ v(r) = const (21)

It is the direct map between densities and potentials that194

we machine-learn in this paper. We call it the HK density195

map, n[v](r).196

The KS scheme avoids direct approximation of F by197

imagining a fictitious system of non-interacting electrons198

with the same density as the real one[14]. The KS equa-199

tions are:200

{
−1

2
∇2 + vs(r)

}
φi(r) = εiφi(r) (22)

where εi are the KS eigenvalues and φi the KS orbitals.201

vs(r) = v(r) + vH(r) + vXC(r) (23)

where vH(r) is the Hartree potential and vXC(r) is the202

exchange-correlation potential. The true energy of the203

system is then reconstructed from the self-consistent den-204

sity n(r) =
∑
i |φi(r)|2 via205

E[n] = Ts[n] + U [n] +

∫
d3r n(r)v(r) + EXC[n] (24)
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where Ts[n] is the kinetic energy of the non-interacting206

electrons and U [n] is the Hartree energy. EXC[n] is the207

exchange-correlation (XC) energy and implicitly defined208

by Eq. 24. Most calculations[15] use simple approxima-209

tions that depend only on the density and its gradient210

to determine EXC, called generalized gradient approxi-211

mations, or replace a fixed fraction of the approximate212

exchange with the exact exchange from a Hartree-Fock213

calculation (called a hybrid). Requiring the XC potential214

to be the functional derivative of EXC ensures that the215

self-consistent solution of Eq. 22 minimizes the energy of216

Eq. 24 for the given v(r) and EXC[n].217
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