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KERNEL RIDGE REGRESSION

Kernel Ridge Regression[l, 2] (KRR) is a machine
learning method for regression. We introduce the
method for abstract training points (z;,y;), i.e. fea-
tures x1,...zym € R? and associated labels Y
(y1,-- -, yM)T € RM and describe the actual models used
in the main text afterwards. We want to model a func-
tion f : R¢ — R that maps from features to labels. This
model should not be ‘learned by heart’ but perform well
on unseen data (i.e. generalize). We first restrict the set
of possible functions to the reproducing kernel Hilbert
space (RKHS) H on the space of discretized densities
that is induced by the Gaussian kernel function

|| — /]|
202 ’

The restriction is very mild and rather technical; more
interesting is the choice of the kernel function which
determines the scalar product (and thus the norm) of
the RKHS. Leaving rigor aside, the Gaussian kernel in-
duces an RKHS norm || f||y that is smaller for simpler,
smoother functions and higher for more complicated, os-
cillating functions. We minimize the empirical risk func-
tional

k(z,z') = exp ( (1)

F@)” + Al £1I5,

Z |lyi — (2)

that defines a trade-off between error on the training
points and smoothness of the function controlled by the
hyper-parameter .

The representer theorem[3] allows us to assume that
the solution to Eq. 2 is %Jven by a linear combination of
kernel functions f = >".7, ak(x;,-). It now suffices to
solve
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fx)? + \aKe,

=y
jzj: (4)

where K;; = k(z;, ;) is the kernel matrix. The solution
is given by

a=(K-A)"'Y. (5)
Note that all model parameters and hyper-parameters
are estimated on the training set; the hyper-parameter
choice makes use of standard cross-validation procedures
(see Hansen et al. [4]). Once the model is fixed after
training, it is applied unchanged out-of-sample.

We use this method for various maps:

Non-interacting kinetic energy functional (TME[n], 1-
D). The training points are given by pairs of densities
and associated kinetic energies. We discretize the densi-
ties and use them in vectorial form, i.e. n € R%. Thus,
the functional £? — R is modeled as a function R® — R

ML-OF map (1-D). The training points are given by
pairs of discretized 1-D box potentials and associated to-
tal energies.

ML-KS map (3-D). The training points are given by
pairs of discretized Gaussians potentials (as described in
the main text) and total energies.

Total energy functional (EME[n], 3-D). The training
points are given by pairs of densities in basis function
representation (see below) and associated total energies.
Just as for TML| this functional is modeled as a function.

ML HOHENBERG-KOHN MAP

The basis representation for the densities is given by
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z) =) ule(z) (6)
=1

where ¢; are the L basis functions. We introduce some
notation and continue to write the density in grid rep-
resentation as n, and its basis coefficients as u. We can
then write the HK map model as

L
nMefo)(z) = Y uPolgi(x), (7)
=1

where the L basis function coefficients are regular KRR
models,

M

ul) [v] = Z @'(l)k(va i),

i=1

(®)

of external potentials v with a Gaussian kernel function.
The contribution of the error to the cost function can be
formulated as

M
e(B) = ZHm —nM [willlz, (9)
i=1
M L M
=3 |m = 2o B kv L (0)
i=1 =1 j=1

Lo

with the £5 norm. We write this cost function in terms
of basis function coefficients. This can be viewed as pro-
jecting the inside of the norm on each basis function.
Assuming orthogonality of the basis functions yields

M
ﬁ(l)k (vi,v5)

L
Z ul! (11)

=1 Jj=

&ME

7
where ugl) = (n;, ¢1) is the [-th basis function coefficient
of the i-th training density, as defined in Eq. 6 if orthog-
onality is satisfied. After reordering the sums over ¢ and
l, we view each [ independently and solve analogously to
regular KRR

1,...,L  (12)

-1

B = (K(,m + )\(l)I) u®, 1
where, for each basis function I, A) is a regularization
parameter, K_q) is a Gaussian kernel with kernel width

o®. The \® and o¢® can be chosen individually for
each basis function via independent cross-validation (see

w [4, 5]).
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BASIS FUNCTIONS

Fourier basis. We define the basis as

[ odd

@(x):{cos{QW:c(ll)/Q}, bodd

sin {27zl /2}
(13)

We transform the density efficiently via the discrete
Fourier transform

ul = fj 13 () 61(2m)- (14)
m=1
The back-projection is written as

L
M) =Y uP i), (15)

=1

KPCA basis. We define the basis as:

KPCA Zpgl)q) (n;). (16)

The parameters pgl) are found by eigen-decomposition of

the Kernel matrix. The KCPA basis coefficients are given
by

(O

u; <(I)(n KPCA

ijl)k (nj,m;)

with kernel map ®. The back-projection for KPCA is
not trivial but several solutions exist. We follow Bakir
et al. [6] and learn the back-projection map.

(17)

GRADIENT DESCENT ISSUES

There are two ways to remedy problems of the gradi-
ent descent procedure: First, the gradient descent step
can be “de-noised” by projecting the gradient onto the
data manifold and thus removing the noisy directions.
Secondly, the directions outside of the data manifold can
be removed in a preprocessing step to get rid of the influ-
ence of the noisy directions on the gradient completely.
Both methods yield similar results.

Several approaches exist for describing and projecting
onto the data manifold. Common to each approach is
the idea to find principle components and to project on
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Figure 1. The extent of the H,O dataset. The figure shows
the atom coordinates in angstrom. Blue are atoms from 15
training points, red from 50 test points.
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those in which direction the densities have largest vari-
ance. Best results are reported [7] by using Kernel Prin-
ciple Component Analysis[8] (KPCA), a non-linear gen-
eralization of PCA.

There are three issues with the assumed gradient-based
approaches: First, the correct choice of the number of
(K)PCA components K has to be made. It is generally
possible to view it as a hyper-parameter and find the op-
timal K via cross-validation. However, we can not choose
fractional Ks. One K might be not enough and K + 1
too much information. Second, the data points only lie
in a bounded region of a manifold that can be described
via PCA components. It is still possible for the gradi-
ent descent to walk outside this bounded region toward
a point where the model has no information and thus the
gradients become inaccurate. A (K)PCA method that
only accesses the scalar products between points in the
data set can not solve this[9]. Third, it might not be
possible to find a suitable pre-image for a ground-state
density given by (K)PCA coefficients[10].

MOLECULAR DATASETS

The extent of the dataset for H,O is visualized in Fig. 1.
In this case, conformers were generated from random dis-
placements from the optimized geometry.

For benzene and ethane, conformers were generated
from isothermal molecular dynamics (MD) trajectories.
The range of atomic positions from combined 1 ns 300 K
and 350 K trajectories is shown in Fig. 2 for benzene
and Fig. 3 for ethane after snapshots are aligned to a
reference molecule. For malonaldehyde, the classical MD
trajectories include 0.5 ns for each tautomer at each tem-
perature. Resulting conformers that are used to create
the K-means sampled training set are shown in Fig. 4.
The test set is taken from an ab initio MD trajectory at
300 K.

151

152

153

154

Figure 2. The extent of the benzene conformers generated by
MD (red points). K-means sampling is used to select 2,000
representative points. Test points from an independent tra-
jectory are in blue and are offset for clarity.

Figure 3. The extent of the ethane conformers generated by
MD (red points). K-means sampling is used to select 2,000
representative points. Test points from an independent tra-
jectory are in blue.

DFT CONVERGENCE

For 3-D DFT

in
Espresso[11], we center a water molecule in a cubic

our calculations Quantum

cell and converge three variables: the kinetic energy
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Figure 4. The extent of the malonaldehyde conformers gener-
ated by MD (red points). K-means sampling is used to select
2,000 representative points. Test points from an independent
ab initio MD trajectory are in blue and are offset for clarity.

cutoff for wavefunctions ecutwfc in steps of 10 Ry, the
kinetic energy cutoff for charge density and potential
ecutrho in steps of 40 Ry, and the cell dimension
celldm in steps of 1 bohr. We increase parameters
until increasing any parameter does not change the
equilibrium position total energy by more than 0.01
kcal/mol for H,O. We end up with ecutwfc of 90 Ry,
ecutrho of 360 Ry, and celldm of 20 bohr, which are
used for all other molecules in this work.

SAMPLING

For Hy, since there is only one atomic distance to ad-
just, we take the M equi-distant points in the parameter
range and for each of these points select the training point
that is closest.

For larger molecules with more parameters (H,0, Ben-
zene, Ethane, Malonaldehyde) we also want to cover the
conformer space in a way that all conformers are rela-
tively close to at least one training point.

Assuming p; are the parameters of conformer i and
i€ Pj if and only if p; is closest to p;, we want to find
Dj, j = 1... M that minimize

M
o>l —will

i=1licP

(18)

K-means[12] solves this problem for continuous p;. How-
ever, since K-means returns only locally optimal solu-
tions, we rerun the algorithm 50 times and select the
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solution which minimizes Eq. 18. We choose the points
p; closest to each p; as training points.

LOGIC OF DENSITY FUNCTIONAL THEORY
(DFT)

Within the Born-Oppenheimer approximation in non-
relativistic quantum mechanics, and using atomic units,
the Hohenberg-Kohn paper[13] laid the theoretical frame-
work of all modern DFT. The first statement is that the

mapping

v(r) <— n(r) (19)
is one-to-one, i.e., at most one potential can give rise to
a given ground-state density, even in a quantum many-
body problem, for given interaction among particles and
statistics (i.e., fermions or bosons). A follow-up claim is
that the ground-state energy of an electronic system can
be found from

E[v] = min {F[n] + /dgr n(r)v(r)} (20)
where F[n] is a density functional containing all many-
body effects. The minimizing density is the solution to
the Euler equation:

oF

dn(r)

+ v(r) = const (21)
It is the direct map between densities and potentials that
we machine-learn in this paper. We call it the HK density
map, n[v](r).

The KS scheme avoids direct approximation of F' by
imagining a fictitious system of non-interacting electrons
with the same density as the real one[14]. The KS equa-
tions are:

{;w + Us@)} o) =aoilr)  (22)

where ¢; are the KS eigenvalues and ¢; the KS orbitals.

vs(r) = v(r) + vu(r) + vxe(r) (23)

where vg(r) is the Hartree potential and vxc(r) is the
exchange-correlation potential. The true energy of the
system is then reconstructed from the self-consistent den-

sity n(r) = 3, [64(r)]? via

Eln] = Tun] + Uln] + / Ern()o(r) + Excln]  (24)
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where Ty[n] is the kinetic energy of the non-interacting
electrons and Uln| is the Hartree energy. Exc[n| is the
exchange-correlation (XC) energy and implicitly defined
by Eq. 24. Most calculations[15] use simple approxima-
tions that depend only on the density and its gradient
to determine Exc, called generalized gradient approxi-
mations, or replace a fixed fraction of the approximate
exchange with the exact exchange from a Hartree-Fock
calculation (called a hybrid). Requiring the XC potential
to be the functional derivative of Exc ensures that the
self-consistent solution of Eq. 22 minimizes the energy of
Eq. 24 for the given v(r) and Exc[n].
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