Crystal Structures

Chapter 7

Wednesday, October 21, 2015

Interstitial sites in CP Structures

A large number of ionic structures can be regarded as built of CP layers of anions with the cations placed in interstitial sites

for every anion, there is 1 Octahedral site and 2 Tetrahedral sites

Fig. 7.7 Interstitial sites in a c.p. structure. Heavy circles are above and the dashed circles below the plane of the paper: (a) T₊ site, (b) T₋ site, (c) O site

Octahedral Holes in CCP

Tetrahedral Holes in CCP

Octahedral Holes in CCP and HCP

Tetrahedral Holes in CCP and HCP

(3/8 of a unit cell directly above/below each anion)

Ionic Crystal Structures

Many ionic crystals consist of a close-packed lattice of the larger anions with the smaller cations occupying interstitial sites.

	Int	erstitial	sites	The same of the sa	
Anion arrangement	T ₊	T_	Oct	Examples	
c.c.p.	are Ω^{2} ,	our . Fig	6.11	NaCl, rock salt	
Some structures may	be relard	ed a a an	ion- d -fi	ZnS blende or sphalerite	\leftarrow
	$\frac{1}{8}$	1/8	$\frac{\frac{1}{2}}{\frac{1}{2}}$	MgAl ₂ O ₄ , spinel	let's look
	regulded	lus Ini/il	<u>1</u>	CdCl ₂ CuFeS ₂	at these
	eogr <u>al</u> It i	X BUTAN	$\frac{1}{3}$	CrCl ₃	
	T 1000	1)		K ₂ O antifluorite	structures
h.c.p.	s lèf u ac	in 1 he	1	NiAs	
lumula NaAL.O	1		44	ZnS, wurtzite	
	<u> </u>	-2	$\frac{1}{2}$	CdI ₂	
Bigging Continues of the State	tons mero		1 1 2 2 3 1 2	TiO ₂ *, rutile	
	_		$\frac{2}{3}$	Al_2O_3	
1 4 Canalant variable	1/8	$\frac{1}{8}$	$\frac{1}{2}$	Mg ₂ SiO ₄ , olivine	
	1	_	-	β -Li ₃ PO ₄	
	$\frac{1}{2}$	$\frac{1}{2}$	-8.00	γ -Li ₃ PO ₄ *	
c.c.p. 'CaO ₃ ' layers	in and the		$\frac{1}{4}$	CaTiO ₃ perovskite	

ion arrangement in these may alternatively be described as tetragonal packed (t.p.).

NaCl Structure

CCP with all octahedral holes filled

Coordination = 6, 6
Cation Coord. → Octahedron
Anion Coord. → Octahedron
Connectivity → Edge sharing octahedra
4 NaCl in unit cell

	a(Å)		a(Å)		a(Å)	17	a(Å)
MgO	4.213	MgS	5.200	LiF	4.0270	KF	5.347
CaO	4.8105	CaS	5.6948	LiCl	5.1396	KCl	6.2931
SrO	5.160	SrS	6.020	LiBr	5.5013	KBr	6.5966
BaO	5.539	BaS	6.386	LiI -	6.00	KI	7.0655
TiO	4.177	αMnS	5.224	LiH	4.083	RbF	5.6516
MnO	4.445	MgSe	5.462	NaF	4.64	RbCl	6.5810
FeO	4.307	CaSe	5.924	NaCl	5.6402	RbBr	6.889
CoO	4.260	SrSe	6.246	NaBr	5.9772	RbI	7.342
NiO	4.1769	BaSe	6.600	NaI	6.473	AgF	4.92
CdO	4.6953	CaTe	6.356	NaH	4.890	AgCl	5.549
SnAs	5.7248	SrTe	6.660	ScN	4.44	AgBr	5.7745
TiC	4.3285	ВаТе	7.00	TiN	4.240	CsF	6.014
UC	4.955	LaN	5.30	UN	4.890		

Zinc Blende (ZnS) Structure

CCP with all T⁺ holes filled

Coordination = 4, 4

Cation Coord. → Tetrahedron

Anion Coord. → Tetrahedron

Connectivity → Corner sharing Tetrahedra

4 ZnS in unit cell

	a(Å)		a(Å)		a(Å)		a(Å)		a(Å)
CuF	4.255	BeS	4.8624	β-CdS	5.818	BN	3.616	GaP	5.448
CuCl	5.416	BeSe	5.07	CdSe	6.077	BP	4.538	GaAs	5.6534
γ-CuBr	5.6905	BeTe	5.54	CdTe	6.481	BAs	4.777	GaSb	6.095
γ-CuI	6.051	β-ZnS	5.4060	HgS	5.8517	AlP	5.451	InP	5.869
γ-AgI	6.495	ZnSe	5.667	HgSe	6.085	AlAs	5.662	InAs	6.058
β-MnS, red	5.600	ZnTe	6.1026	HgTe	6.453	AlSb	6.1347	InSb	6.4782
β-MnSe	5.88	β-SiC	4.358	a kada a ka					

Fluorite (CaF₂) and Antifluorite (Li₂O)

Fluorite: CCP of Ca²⁺ with all T⁺ and T⁻ holes filled with F⁻

Antifluorite: CCP of O²- with all T⁺ and T⁻ holes filled with Li⁺

Fluorite A-cell

Coordination = 8, 4 (fluorite) Cation Coord. \rightarrow Cubic Anion Coord. \rightarrow Tetrahedral Connectivity \rightarrow Edge sharing FCa_4 tetrahedra or edge sharing CaF_8 cubes $4 CaF_2$ in unit cell

Plan view

FCa₄ Tetrahedra

	Fluorite	structure			Antifluor	ite structure	
ine earth	a(Å)	So Tel Gl	a(Å)	gostari 3 ()	a(Å)	rneliure po	a(Å)
CaF,	5.4626	PbO,	5.349	Li ₂ O	4.6114	K ₂ O	6.449
SrF ₂	5.800	CeO,	5.4110	Li ₂ S	5.710	K ₂ S	7.406
SrCl ₂	6.9767	PrO ₂	5.392	Li ₂ Se	6.002	K ₂ Se	7.692
BaF,	6.2001	ThO,	5.600	Li ₂ Te	6.517	K,Te	8.168
BaCl ₂	7.311	PaO,		Na ₂ O	5.55	Rb,O	6.74
CdF ₂	5.3895	UO ₂	5.372	Na ₂ S	6.539	Rb ₂ S	7.65
HgF ₂	5.5373	NpO,	5.4334	Na ₂ Se	6.823	are, enther	
EuF ₂	5.836	PuO ₂	5.386	Na ₂ Te	7.329		
β-PbF ₂	5.940	AmO ₂	5.376	Standard of		line SIT	
nutt ette		CmO_2	5.3598				

Alternative Representations of Fluorite

Displacing the unit cell by ¼ of a body diagonal emphasizes the cubic cation coordination:

Fluorite (CaF₂) and Antifluorite (Li₂O)

- origin of the term "fluorescence" (George Stokes, 1852)
- fluorite common for fluorides of large, divalent cations and oxides of large tetravalent cations (M²⁺F₂ and M⁴⁺O₂)
- antifluorite common for oxides/chalcogenides of alkali earths (M₂O)

Wurtzite (ZnS) Structure

HCP with all T+ holes filled

Coordination = 4, 4
Cation Coord. → Tetrahedron
Anion Coord. → Tetrahedron
Connectivity → Corner sharing Tetra.
2 ZnS per unit cell

Table 7.9 Some compounds with the wurtzite structure. (Data taken from Wyckoff, 1971, Vol. 1)

	a(Å)	c(Å)	u	c/a	a(Å)	c(Å)	oo u m	c/a
ZnO	3.2495	5.2069	0.345	1.602 AgI	4.580	7.494	U indicari Mount an	1.636
ZnS	3.811	6.234		1.636 AIN	3.111	4.978	0.385	1.600
ZnSe	3.98	6.53		1.641 GaN	3.180	5.166		1.625
ZnTe	4.27	6.99		1.637 InN	3.533	5.693		1.611
BeO	2.698	4.380	0.378	1.623 TaN	3.05	4.94		1.620
CdS	4.1348	6.7490		1.632 NH ₄ F	4.39	7.02	0.365	1.600
CdSe	4.30	7.02		1.633 SiC	3.076	5.048		1.641
MnS	3.976	6.432		1.618				
MnSe	4.12	6.72		1.631				

Diamond Structure

same as zinc blende, but with only one element

diamond

zinc blende

Coordination = 4 Connectivity → Corner sharing Tetrahedra 8 C atoms per unit cell

TABLE 1.9 Structure	Elemental Crystals with the Diamond				
Element	$a \text{ (nm)}^a$	Element	a (nm) ^a		
C	0.3567	Side	0.543		
Ge	0.5657	Sn (gray)	0.649		

CsCl Structure

simple cubic lattice with Cs⁺ at cube center (not CP, not BCC!)

Coordination = 8, 8

Cation Coord. → Cubic

Anion Coord. → Cubic

Connectivity → face sharing cubes

1 CsCl per unit cell

	a(Å)		
CsCl	4.123	CuZn	2.945
CsBr	4.286	CuPd	2.988
CsI	4.5667	AuMg	3.259
CsCN	4.25	AuZn	3.19
NH ₄ Cl	3.8756	AgZn	3.156
NH ₄ Br	4.0594	LiAg	3.168
TICI	3.8340	AlNi	2.881
TlBr	3.97	LiHg	3.287
TII	4.198	MgSr	3.900

Adoption by chlorides, bromides and iodides of larger cations

Self Test

Identify the following crystal structures:

