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Using Symmetry: Molecular Orbitals

One approach to understanding the electronic structure of molecules
is called Molecular Orbital Theory.

- MO theory assumes that the valence electrons of the atoms within
a molecule become the valence electrons of the entire molecule.

- Molecular orbitals are constructed by taking linear combinations
of the valence orbitals of atoms within the molecule. For example,
consider Ha:
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- Symmetry will allow us to treat more complex molecules by
helping us to determine which AOs combine to make MOs



LCAO MO Theory

The most common approach to approximating MOs is the linear
combination of atomic orbitals method

Yn = Z CniPi = Cn1P1 + Cra2 + Cpzpz +
i

- ¢s are the valence AOs of the atoms that make up the molecule
- cs are weighting coefficients that tell how much of each AO is in the MO

Three conditions must be met for AOs to interact and form MOs:
- The AOs must have the same symmetry

- The AOs must have similar energy

- The AOs must have spatial overlap

Like any model, LCAO MO theory provides only an approximation to
the exact electronic structure of molecules.



MO Math for Diatomic Molecules

Consider two atoms A and B each carrying a single atomic orbital, ¢, and ¢,.

A ?,

Each MO may be written as an LCAO: W = Cl¢1 + C2¢2

Since the probability density is given by the square of the wavefunction:
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MO Math for Diatomic Molecules
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The individual AOs are normalized: f pzdr =1

f¢%dr= 1
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_ of finding electron
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MO Math for Homonuclear Diatomic Molecules

For two identical AOs on identical atoms, the electrons are equally shared, so:
. 2 A2
W =C¢ +C,0, C, =G

In other words: C1 = iCz

So we have two MOs from the two AQOs:

v, =C,, (@ +¢,) y_=C (4 —9)
After normalization (setting jwfdf =1 and jw_zdf =1):
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where S is the overlap integral: § = f o19,dt ()<S <]
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LCAO MO Energy Diagram for H:

H, molecule: two 1s atomic orbitals combine to make one
bonding and one antibonding molecular orbital.
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- AE2 > AE4, so the antibonding orbital is always more anti-bonding than the bonding
orbital is bonding



MOs for H,
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in phase combination V., +¢; +240))
constructive interference 2(1 S)

large e~ density in the internuclear region (bonding)

an electron in this MO lowers the molecule’s energy
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out of phase combination V- (& +¢2 —20,0,)
destructive interference 2(1 S)

small e~ density in the internuclear region (antibonding)
nodal plane between atoms

an electron in this MO raises the molecule’s energy




MO Notation

Schematic representations of the MOs:

« shading indicates sign of AO
« size of AQO reflects the magnitude of its coefficient in the MO



Basic Rule #1 of MO Theory

Rule #1: The interaction of n AOs leads to the formation of n
MOs. If n =2, one MO is bonding and one antibonding. The
bonding orbital is more stable than the lower-energy AO. The
antibonding orbital is less stable than the higher-energy AO. The
bonding orbital is stabilized less than the antibonding orbital is

destabilized.




H, vs. He,

dihydrogen dihelium
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Basic Rule #2 of MO Theory

Rule #2: If the AOs are degenerate, their interaction is
proportional to their overlap integral, S.
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large overlap small overlap
5 = f $1¢,dt
space

The greater the degree of overlap, the stronger the bonding/antibonding.



Basic Rule #3 of MO Theory

Rule #3: Orbitals must have the same symmetry (same
irreducible representation) to have non-zero overlap.

5= f¢1¢sz

space

« S =0if orbitals have different irreducible representations.

If S # 0, then bonding and antibonding MOs result.

If the overlap integral between two orbitals centered on different
atoms is zero, then there is no interaction between them.

 If an orbital has S = 0 with all other orbitals in the
molecule, then it is a 100% non-bonding orbital.




Overlap and Bond Type

The bonding nature of an orbital interaction is defined by the relative

orbital phasing
Q-0 =0

bonding anti-bonding

The type of bonding is defined by the nhumber of hodes parallel to the
bond

0 or o-bonding r[ 5
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g" or g-anti-bonding
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Interactions between different types of orbitals is okay as long as
there is net overlap
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Overlap and Symmetry

The extent of overlap depends on the internuclear separation, the
nature of the orbitals involved (s, p, or d), and their relative orientation.
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Overlap and Symmetry

1s/2p overlap depends on the angle ©:

overlap goes as cos0:

0 =90° 0=0°

18,




Overlap and Symmetry

d orbitals
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Basic Rule #4 of MO Theory

Rule #4: If the AOs are non-degenerate, their interaction is
proportional to S°/AE, where AE is the energy separation
between the AOs. In this case the bonding orbital is mostly
localized on the atom with the deeper lying AO, usually the
more electronegative atom. The antibonding orbital is mostly
localized on the atom with the higher AO.

4 W_ .—O W = Cl¢1 C2¢2

¢l #cC;

Orbitals with AE > 12-14 eV have essentially zero interaction.



Basic Rule #4 of MO Theory
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