# Chemistry of the Main Group Elements: Hydrogen, Alkali and Alkaline Earth Metals

**Sections 8.1-8.4** 

Wednesday, November 4, 2015

# Hydrogen

#### Obviously the simplest element, with a $1s^1$ electron configuration.

 placement on the Periodic Table is questionable: is it an alkali metal, is it a halogen, or should it be placed above carbon (half-filled valence shell)?







# **Hydrogen Production**

#### **Laboratory Scale**

$$Zn(s)+2HCl(aq)\longrightarrow ZnCl_2(aq)+H_2(g)$$

#### **Steam Reforming**

$$CH_4(g) + H_2O(g) \xrightarrow{1000^{\circ}C} CO(g) + 3H_2(g)$$

$$\Delta H_{rxn}^{\circ} \cong +49.3 \frac{kcal}{mol}$$

$$C(s) + H_2O(g) \xrightarrow{1000^{\circ}C} CO(g) + H_2(g)$$

$$\Delta H_{rxn}^{\circ} \cong +31.4 \frac{kcal}{mol}$$

Driven by entropy!

#### **Water-Gas Shift Reaction**

$$CO(g) + H_2O(g) \xrightarrow{300^{\circ}C} CO_2(g) + H_2(g)$$
  
$$\Delta H_{rxn}^{\circ} \cong -9.8 \frac{kcal}{mol}$$

# **Hydrogen Use**

#### **Ammonia Production**

$$N_{2}(g) + 3H_{2}(g) \xrightarrow{450^{\circ}C} 2NH_{3}(g)$$

$$\Delta H_{rxn}^{\circ} \cong -11 \frac{kcal}{mol}$$

#### **Medicinal Chemistry**

#### **Food Chemistry**

# The Hydrogen Economy

Hydrogen is an attractive fuel because of its high heat of combustion and zero pollution

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O(g)$$

$$\Delta H_{rxn}^{\circ} \cong -57.8 \frac{kcal}{mol}$$

The problem: our hydrogen comes from fossil fuels

$$CH_{4}(g) + H_{2}O(g) \longrightarrow CO(g) + 3H_{2}(g) \qquad \Delta H_{rxn}^{\circ} \cong +49.3 \frac{kcal}{mol}$$

$$CO(g) + H_{2}O(g) \longrightarrow CO_{2}(g) + H_{2}(g) \qquad \Delta H_{rxn}^{\circ} \cong -9.8 \frac{kcal}{mol}$$

$$4H_{2}(g) + 2O_{2}(g) \longrightarrow H_{2}O(g) \qquad \Delta H_{rxn}^{\circ} \cong -231 \frac{kcal}{mol}$$

$$CH_{4}(g) + 2O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O(g) \qquad \Delta H_{rxn}^{\circ} \cong -192 \frac{kcal}{mol}$$

Same overall result as burning methane: same energy out, same CO<sub>2</sub> out. **To be clean, H<sub>2</sub> must come from something other than fossil fuels.** 

# **Types of Hydrogen Compounds**

#### **Metallic Hydrides**

- conducting hydrides (MgH<sub>2</sub>, NiH<sub>x</sub>)
- often non-stoichiometric, i.e.,  $[MH_x]$  where x < 1 (PdH<sub>x</sub>)

#### **Saline Hydrides**

- salt-like solids of alkali and alkaline earth metals
- non-conducting
- characterized by a reduced hydrogen, i.e., [M<sup>+</sup>H<sup>-</sup>]

#### **Molecular Hydrides**

- electron precise compounds: CH<sub>4</sub>, SiH<sub>4</sub>, GeH<sub>4</sub>
- basic covalent hydrides: NH<sub>3</sub>, PH<sub>3</sub>, AsH<sub>3</sub>
- weak-acid covalent hydrides: H<sub>2</sub>O, H<sub>2</sub>S
- strong-acids: HF, HCI, HI
- electron-deficient hydrides: B<sub>2</sub>H<sub>6</sub>
- anionic hydrides: BH<sub>4</sub><sup>-</sup>, AIH<sub>4</sub><sup>-</sup>

# **Hydride Stability**

- Formation of saline hydrides generally is exoergic ( $\triangle G < 0$ )
- Formation of acids is mostly excergic
- $\Delta G_{f}$  of covalent hydride compounds can be exoergic or endoergic
  - 2<sup>nd</sup> row and lower are endoergic as such, compounds like SiH<sub>4</sub> are <u>extremely</u> reactive

|        | Group           |                  |                  |                  |                  |                 |                 |
|--------|-----------------|------------------|------------------|------------------|------------------|-----------------|-----------------|
|        | 1               | 2                | 13               | 14               | 15               | 16              | 17              |
| Period | ΙA              | IIA              | IIIB             | IVB              | VB               | VIB             | VIIB            |
| 2      | LiH(s)<br>-16.4 | BeH2(s)<br>+4.8  | B₂H6(g)<br>+20.7 | CH4(g)<br>-12.1  | NH₃(g)<br>-3.9   | H₂O(I)<br>-56.7 | HF(g)<br>-65.3  |
| 3      | NaH(s)<br>-8.0  | MgH₂(s)<br>-8.6  | AlH₃(s)<br>~0    | SiH4(g)<br>+13.6 | PH₃(g)<br>+3.2   | H₂S(g)<br>-8.0  | HCl(g)<br>-22.8 |
| 4      | KH(s)<br>-8.6   | CaH₂(s)<br>-35.2 | Ga2H6(s)<br>>0   | GeH4(g)<br>+27.1 | AsH₃(g)<br>+16.5 | H₂Se(g)<br>+3.8 | HBr(g)<br>-12.8 |
| 5      | RbH(s)<br>-7.2  | SrH₂(s)<br>-33.6 |                  | SnH₄(g)<br>+45.0 | SbH₃(g)<br>+35.3 | H2Te(g)<br>>0   | HI(g)<br>+0.4   |
| 6      | CsH(s)<br>-7.6  | BaH2(s)<br>-33.4 | kcal/mol         |                  |                  |                 |                 |

# **Hydride Synthesis and Reactivity**

#### **Synthesis**

- Direct reaction (radical based)  $2E + H_2 \longrightarrow 2HE$
- Protonation (transfer of H<sup>+</sup>)  $E^- + H_2O \longrightarrow HE + OH^-$
- Metathesis (transfer of H<sup>-</sup>)  $EX + MH \longrightarrow MX + HE$

#### **Reactivity Patterns**

- Homolytic cleavage  $HE \longrightarrow H^{\bullet} + E^{\bullet}$
- Hydride Transfer  $HE \longrightarrow E^+ + H^-$
- Proton Transfer  $HE \longrightarrow E^- + H^+$

#### **Alkali & Alkaline Earth Metals**

#### **Naturally occurring in various minerals**



rock salt (NaCl)



carnallite (KCI•MgCl<sub>2</sub> • 6 H<sub>2</sub>O)



beryl ( $Be_3Al_2(SiO_3)_6$ )



limestone (CaCO<sub>3</sub>)



dolomite (CaCO<sub>3</sub>•MgCO<sub>3</sub>)

#### Alkali & Alkaline Earth Metals

# Li, Na and K were discovered by electrolysis (1807-1818)





Cs and Rb were discovered spectroscopically in mineral spa waters

#### Lithium is a very important metal

- Li<sub>2</sub>CO<sub>3</sub> flux in porcelain enamels, hardening agent for glass, therapeutic for manicdepressive psychoses
- Li<sup>0</sup> lightens and strengthens aircraft aluminum, alloyed with Mg for armor plate
- LiOH CO<sub>2</sub> absorber in space capsules and submarines



#### **Solvated Electron Solutions**

#### All alkali metals (plus Ca, Sr, & Ba) dissolve in liquid ammonia

$$M^0 \xrightarrow{NH_3(l)} M^+ (NH_3)_n + e^- (NH_3)_n$$

#### Dilute Solutions

- · dark blue in color ( $\lambda_{max} \cong 1500$  nm) diagnostic of a 'solvated electron'
- paramagnetic
- useful reducing agent (Birch reduction)



#### Concentrated Solutions

- metallic bronze color
- conductivity like a molten metal
- weakly paramagnetic



#### **Alkalides and Electrides**

Crown ethers and cryptands are special Lewis bases designed to selectively bind metal cations.



**18-crown-6** 260-280 pm K<sup>+</sup>, Sr<sup>2+</sup>



dibenzo-14-crown-4 120-150 pm Li<sup>+</sup>, Mg<sup>2+</sup>



benzo-15-crown-5 170-220 pm Na<sup>+</sup>, Ca<sup>2+</sup>





#### **Alkalides**

$$2Na^{0} + [2.2.2] \text{cryptand} \xrightarrow{EtNH_{2}(l)} [Na(\text{cryptand})]^{+} + Na^{-}$$

#### **Electrides**

$$Cs^0 + 18crown6 \longrightarrow \left[ Cs(crown) \right]^+ + e^-$$

### **Cs 15-crown-5 Sandwich Electride**

Cs+(15c5)<sub>2</sub>e-



## **Organometallic Chemistry**

#### **Arene Reduction**

$$+Na^0 \xrightarrow{solvent} Na^+ +$$

- ethereal solvents (ether groups act as Lewis bases to prevent aggregation)
- · reduced arene is deep green to deep blue
- similar to the solvated electron

#### **Organolithium Reagents**

$$2Li^0 + RX \xrightarrow{solvent} LiR + LiX$$

- alkane, arene, or ethereal solvents
- works best for alkyl derivatives
- most stable for R = Me, nBu, tBu
- LiR is actually a higher order cluster depending on R group
- LiR used as very strong base, or for nucleophilic addition of R<sup>-</sup>

# **More Organolithium Chemistry**

#### Aryl derivatives accessible by metal-halogen exchange

$$tBuLi + PhI \xrightarrow{solvent} PhLi + tBuX$$

#### Unsaturated derivatives accessible by transmetallation

Sn 
$$H$$
  $+4PhLi$   $\xrightarrow{solvent}$   $SnPh_4$   $+4Li$   $H$  tetravinyl tin vinyl lithium

#### **General Reactivity**

$$RLi + X_2 \longrightarrow RX + LiX$$

$$RLi + HX \longrightarrow RH + LiX$$

$$RLi + R'X \longrightarrow RR' + LiX$$

# Organomagnesium (Grignard) Chemistry

$$Mg^0 + RX \longrightarrow RMgX$$

- reactivity is I > Br > Cl and alkyl > aryl
- · mechanism is poorly understood

#### **Sample Reactivity**

Formation of primary alcohols

$$RMgX + O_2 \longrightarrow ROOMgX \xrightarrow{RMgX} 2ROMgX \xrightarrow{2HX} 2ROH + 2MgX_2$$

Formation of substituted alcohols

# **Organomagnesium Reactivity**

In general Grignard reagents always react as the carbanion (nucleophile) to attack an electrophile:



# **Organomagnesium Reactivity**

In general Grignard reagents always react as the carbanion (nucleophile) to attack an electrophile:

